
UGC DAE CSR
KCInnovative Experiments Using Open Source for UG Physics Students.

May 2021
Lecture 1: Getting Started with Arduino

Mukesh Kumar, K Basu, P V Rajesh, R Raut, S S Ghugre UGC DAE CSR, KC

Note : This manuscript attempts to use the Open Source tools in setting up innovative experiments,
for UG & PG Physics course.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal pub-
lications. They may be distributed outside the intended audience only with the permission of the
author. The material has been developed following the discussions with our colleagues, during the
workshops that have been conducted in collaboration with

• Department of Physics, Asutosh College, Kolkata : November 7th − 8th , 2017

• Department of Physics & Computer Science, Bethune College, Kolkata, July 19th−20th 2018

• R. P. Gogate College of Arts & Science, Ratnagiri, December 18th − 19th 2018

• S. H. Kelkar College, Devgad, December 22nd − 23rd 2018

• Department of Physics, Government Holkar Science College, Indore, September 17th − 18th

2019

• Department of Physics, R.D & S.H National College, Mumbai, February 6th − 7th 2020

• Department of Physics, Victoria Institution (College), Kolkata, July 6th − 10th 2020

Contents

1.1 Introduction 1-4

1.2 ARDUINO Microcontroller 1-4

1.3 The Hardware Real Estate 1-5

1.3.1 Variants of the Arduino . 1-7

1.3.2 Essential Accessories . 1-7
0Email : ssg@alpha.iuc.res.in & ssg.iuc@gmail.com

1-1

UGC DAE CSR
KC

1-2 Lecture 1: Getting Started with Arduino

1.4 Arduino & Computer 1-8

1.4.1 Initial Configuration of IDE . 1-10

1.5 First Progam : Blink LED 1-12

1.6 Record Analog Voltage 1-16

1.6.1 ADC on ARDUINO . 1-16

1.6.2 Read Analog Voltage . 1-17

1.6.3 Time Stamped Data . 1-19

1.7 Temperature Measurement using LM35 1-22

1.7.1 LM35 Temperature Sensor . 1-22

1.7.2 Circuit Diagram . 1-22

1.7.3 Sketch for temperature measurement . 1-23

1.7.4 Results . 1-24

1.8 Temperature Measurement Using DHT 11 1-25

1.8.1 Introduction . 1-25

1.8.2 Installing the DHT11 Library . 1-25

1.8.3 Installing the DHTLib . 1-25

1.8.4 Sketch for DHT11 . 1-26

1.9 Temperature Measurement Using Thermistor 1-27

1.9.1 Thermistors . 1-27

1.9.2 Circuit . 1-28

1.9.3 Sketch to record temperature . 1-28

1.10 PWM : Fade a LED 1-30

1.10.1 Introduction . 1-30

1.11 Charging of Capacitor 1-32

1.11.1 Introduction . 1-32

1.11.2 Circuit . 1-33

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-3

1.11.3 Sketch for Acquiring Data . 1-34

1.11.4 Procedure . 1-34

1.11.4.1Analysis Of The Acquired Data . 1-35

1.11.5 Results . 1-36

1.12 Astable Multivibrator using 555 Timer 1-37

1.12.1 Introduction . 1-37

1.12.2 555 Timer . 1-37

1.12.3 Circuit . 1-41

1.12.4 Sketch for Acquiring Data . 1-42

1.12.5 Analysis of the Data . 1-44

1.12.6 Results . 1-45

1.13 Transistor as a switch 1-45

1.13.1 Introduction . 1-45

1.13.2 Circuit . 1-46

1.13.3 Determination of Planck’s Constant from this circuit 1-47

1.14 Time Period of Pendulum 1-48

1.14.1 Introduction . 1-48

1.14.2 Proximity Sensor . 1-49

1.14.3 Analysis . 1-50

1.15 Arduino and LDR 1-52

1.15.1 Voltage Divider . 1-52

1.15.2 Light Dependent Resistor . 1-53

1.15.3 Arduino & LDR . 1-53

1.16 Precautions 1-55

UGC DAE CSR
KC

1-4 Lecture 1: Getting Started with Arduino

1.1 Introduction

UGC-DAE Consortium for Scientific Research, Kolkata Centre, is in the process of developing a
range of innovative, low cost experiments based on the routinely available resources for the under-
graduates. These experiments are expected to be illustrative and contribute in their understanding
of the basics of the subject, apart from rejuvenating the fun factor in the learning process. And all
this with an accompanying rigor on the extracted numbers.

For these set of innovative experiments the data acquisition is performed using routinely available
resources viz.

1. The sound card an integral part of the personal computer.

2. Arduino , an open source microcontroller.

The the data visualisation and analysis is performed using the Open Source toolkits (packages) viz.
Octave and Python.

1.2 ARDUINO Microcontroller

A micro-controller is self contained system with processor, memory & peripherals combined on a
single hardware real estate, which is an open-source physical computing platform based on a simple
i/o board and a development environment

Innovative micro-controller based experiments can be developed which would allow for open-ended
experiments in the conventional laboratory.

Why ARDUINO ?? The choice of Arduino (Fig. 1.1) was essentially due to

1. It being an Open Source , both in terms of hardware and software. It is available from several
vendors across the country, unlike some of the other kits which are available only through a
select vendors, which goes against the ethos of GPL.

2. The hardware is cheap and can also be built from the components using the information
available in public domain.

3. It can be powered from either a USB or a standalone DC power

4. It can run standalone from a computer (chip is programmable) and it has a decent memory.

5. It can work with both Digital and Analogue signals, Sensors and Actuators

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-5

Figure 1.1: Arduino Mircocontroller.

6. It can communicate with the computer via

(a) Serial , Bluetooth , Ethernet

7. Various shields, ie. boards that can be plugged on top on the Arduino or it’s variants, that
enhance it’s capabilities are easily available.

8. Ready made boards such as IR transmitter and receiver, Ultra sonic distance sensor, to name
a few are available which can be easily integrated with the Arduino microcontroller, allowing
us the flexibility to configure experiments as per user requirement and specifications.

1.3 The Hardware Real Estate

(A) CPU
And at the heart of the Arduino development board is the Atmel ARV Atmega 328P (A) ,
a modified Harvard architecture 8-bit RISC single chip microcontroller which was developed
by Atmel in 1996. It can be identified as a prominent black rectangular chip with 28
pins. The components of relevance to us are

(i) 32 KB Flash memory, onto which the programs are stored. They survive a power recycle,
until over written.

(ii) 2KB of RAM, which is the transparent run time memory.
(iii) CPU, which is the heart or brain of the microcontroller.

UGC DAE CSR
KC

1-6 Lecture 1: Getting Started with Arduino

(iv) A non volatile Electrically Erasable Programmable Read Only Memory (EEPROM) of
1KB which keeps the data even after device restart and reset.

(B) USB Interface Chip
The ATMega 16U2 programmable USB to UART (Universal Asynchronous Receiver-Transmitter
: variable speed for serial communication), converts signals in the USB level to a level com-
patible with the Arduino UNO board.

(C) Power pins
Power Pins the 5v & 3v3 provide 5 and 3.3 volt dc supply to external components. The
GND pins are used to close the electrical circuit and provide a common logic reference level
throughout the circuit. The external circuit and the Arduino board should have a Common
ground.

(D) Analog pins
The Arduino Uno has 6 analog pins, which utilize a 10 bit ADC (Analog to Digital converter).
They can accept a maximum voltage of 5 volt. They are labelled as Pins A0-A5, These pins
just measure voltage and not the current because they have very high internal resistance.
Hence, only a small amount of current flows through these pins.

(E) Digital pins
Pins labelled 0-13 of the Arduino Uno serve as digital input/output pins. Pin 13 of the
Arduino Uno is connected to the built-in LED.
When digital pins are used as output pins, they supply 40 milliamps of current at 5 volts,
however, it is recommended to limit the current to 20 milliamps.
In the Arduino Uno - pins 3,5,6,9,10,11 labelled by () have Pule Width Modulation capability
which simulate an analog like output.

(F) ICSP header ICSP stands for In-Circuit Serial Programming, which at times are used to
program the microcontroller using dedicated programming device.

(G) USB Connector This is a printer USB port used to load a program from the Arduino IDE
onto the Arduino board. The board can also be powered through this port.

(H) Power Port The Arduino board can be powered through an AC-to-DC adapter or a battery
using a conventional 2.1mm center-positive plug into the power jack of the board.

(I) Reset Switch A short press would restart the program, whereas a long press would reset it
to factory settings.

(J)

(K) Crystal Oscillator This is a quartz crystal oscillator which ticks 16 million times a second.
On each tick, the microcontroller performs one operation, for example, addition, subtraction,
to name a few.

1. Power ON LED Indicates that the board has been powered ON.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-7

2. TX / RX LED TX stands for transmit, and RX for receive. These are indicator LEDs which
blink whenever the UNO board is transmitting or receiving data ie the board is communicating
with the host computer.

3. SMD Components

4. On Board LED The on board LED is connected to digital pin-13.

1.3.1 Variants of the Arduino

The Arduino micro-controller comes in several variants, some of the most popular being

1. Uno

2. Mega

3. Nano

Figure 1.2: Arduino Uno, Mega and Nano .

Original Nano boards are getting rare, and one usually ends up with a clone . If so the device
drivers for the communication chip have to be manually updated before one can use
these boards. The present manuscript utilizes the Arduino Uno boards. No support can be
extended to the Nano Clones.

1.3.2 Essential Accessories

To effectively use the Arduino, we require the following

1. USB printer cable, Fig.1.3

UGC DAE CSR
KC

1-8 Lecture 1: Getting Started with Arduino

2. Breadboards

(a) Mini Breadboard
(b) Small Breadboard

3. Breadboard Power supply , this has to be used with a small breadboard.

4. Connectors

5. Breakout Boards

6. Components

Figure 1.3: USB cable, Mini Breadboard and Small Breadboard .

Breakout boards or prototype shields (Fig.1.6), are also available which help us integrate the boards
with external electrical circuitry for our specific experiments.

1.4 Arduino & Computer

The Arduino Software (Integrated Development Environment) allows us to write programs and
upload them on to the board, in a user friendly and transparent manner.

The program for Arduino are referred to as Sketch , and is a cousin of the familiar C programming
language.

The first step in programming the Arduino board is downloading and installing the Arduino IDE.
The open source Arduino IDE is available for Windows, Mac OS X, and Linux.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-9

Figure 1.4: Breadboard power supply .

Figure 1.5: 9V snap connector and Single strand connectors .

UGC DAE CSR
KC

1-10 Lecture 1: Getting Started with Arduino

Figure 1.6: Prototype expansion boards for Arduino Uno, and Nano .

The details for getting started with Arduino on Windows is provided at

http://arduino.cc/en/Guide/Windows

Figure 1.7: Download the IDE from arduino.cc/en/Main/Software.

1.4.1 Initial Configuration of IDE

Now all we need to do is connect the microcontroller to the system via a USB (Fig.1.8) and we are
all set.

We need to configure the development environment, by providing, the board details as well as the
port (Fig.1.9) to which it is connected. Most of the time the software will prompt you with the
correct options :

Now, we are all set to venture into the world of microcontrollers.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-11

Figure 1.8: Connect the Arduino to the host computer.

Figure 1.9: Selection of the Board and Com port.

UGC DAE CSR
KC

1-12 Lecture 1: Getting Started with Arduino

1.5 First Progam : Blink LED

A program in Arduino is referred to as Sketch .

The anatomy of a sketch is

void setup() → initialization
executed only when the program begins

void loop() → code executed continously

On activating (double click the Arduino icon on the desktop), we would be presented with the
following window (Fig.1.10) :

Figure 1.10: Start writing your sketch.

The summary of the various buttons on the screen are enumerated in the figure above.

Having done this we are all set to write our first program for the micro-controller which is the
equivalent of Hello World, the first program conventionally written in any language.

We know that we have an on-board LED connected to digital pin number 13, and if we were
sequentially make the pin HIGH and LOW, we would observe the LED to blink.

The code which causes the LEB to blink is

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-13

1

2 // the setup funct ion runs once when you pres s r e s e t or power the board
3 void setup () {
4 // i n i t i a l i z e d i g i t a l pin LED_BUILTIN as an output .
5 pinMode(LED_BUILTIN, OUTPUT) ;
6 }
7

8 // the loop funct ion runs over and over again f o r eve r
9 void loop () {

10 d ig i ta lWr i t e (LED_BUILTIN, HIGH) ; // turn the LED on (HIGH i s the vo l tage l e v e l)
11 delay (1000) ; // wait f o r a second
12 d ig i ta lWr i t e (LED_BUILTIN, LOW) ; // turn the LED o f f by making the vo l tage LOW
13 delay (1000) ; // wait f o r a second
14 }

Blink On Board LED

In the initialization routine, we define (Line -4) the digital pin number 13 as an output pin. Here,
we have taken recourse to the built-in constant , LED_BUILTIN , which refers to digital pin
number 13.

In the main loop of the program, we first set this pin HIGH Line -10) then we wait for a preset
time delay(1000), where the argument is in milli-seconds.

Following this delay, we then set this pin to a LOW state, and again wait for 1000milli − second
(Line -12-13)

Now, we are ready to Compile the code and then Upload the code to the microcontroller.

The procedure to transfer this code onto the Arduino is as follows (Fig.1.11) :

1. The sketch, which is case sensitive, is typed in the program area.

2. Press the Compile button, for compilation and any errors are identified in this process and
need to be rectified before the code is compiled.

3. Press the Upload button, to program the Arduino board with the sketch.

4. During the uploading, the TX/RX LED will flash, indicating a communication between the
Arduino and the PC.

Once the code gets uploaded on to micro-controller, the on-board LED which is connected to
pin 13 will blink (Fig.1.12). The blinking rate can be controlled by modifying the option param-
eter for delay . The parameter is set in milli-seconds. Play around with value and observe when
the LED appears to have a constant illumination, which will be due to persistence of vision.

UGC DAE CSR
KC

1-14 Lecture 1: Getting Started with Arduino

Figure 1.11: Compile and upload the sketch.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-15

Figure 1.12: Blinking the on-board LED.

UGC DAE CSR
KC

1-16 Lecture 1: Getting Started with Arduino

1.6 Record Analog Voltage

1.6.1 ADC on ARDUINO

An Analog-to- Digital Convertor, converts the analog voltage which is provided as input into an
equivalent digital number.

We classify (specify) the given ADC based upon the number of bits.

For example if we have a 10 bit ADC (present onboard in Arduino), then it will map Vmin to Vmax →
210 = 1024 digital numbers.

Arduino accepts analog signals up to 5 volt and hence has a resolution of about 5 milli-Volt.

We know that, the ADC after converting the input analog voltage would return an integer value
(channel number).

The inbuilt function analogRead(pin_number), would help us obtain the ADC value for the given
input analog voltage.

Since, the ADC channel number is an integer, the variable which stores this value has to be declared
as integer.

int SensorValue = analogRead(A0);

The above command, would store the ADC channel number (as an integer) corresponding to the
analog voltage connected to Analog Pin Number 0.

If we were to connect the onboard 5V supply to this pin, the variable SensorValue would have a
value of 1023, where as if we were to connect the 3.3V supply it would have a value of 673

Now, the value obtained would have to be displayed to the user. A simple solution would be to use
the Serial Monitor for this purpose.

Hence, in the initialization routine we need to set up the communication with the Serial Monitor.
The parameter of relevance would be the baud rate, the rate at which the data is communicated.
The command below sets the value at 9600 bits per second.

Serial.begin(9600)

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-17

1 // the setup rout ine runs once when you pres s r e s e t : // ‘
2

3 void setup () {
4 // i n i t i a l i z e s e r i a l communication at 9600 b i t s per second :
5 S e r i a l . begin (9600) ;
6 }
7

8 // the loop rout ine runs over and over again f o r eve r :
9

10 void loop () {
11 // read the input on analog pin 0 :
12 i n t sensorValue = analogRead (A0) ;
13 // pr int out the value you read :
14 S e r i a l . p r i n t ln (sensorValue) ;
15 // delay in the m i l l i - seconds in between reads f o r s t a b i l i t y
16 delay (1000) ; // delay in between reads f o r s t a b i l i t y
17 }

Read Analog Value

Once the program is compiled and uploaded you can view the results in the Serial Monitor , the
commands of relevance are shown below, and the results are presented in the Fig.1.13.

Tools −→ Serial Monitor
−→ Autoscroll
−→ Show timestamp
−→ Carriage return
−→ 9600 baud

Since we have used the on-board 5V supply, we have the ADC channel number as 1023.

1.6.2 Read Analog Voltage

We know that the ADC converts the input into a channel number, and we then need to map it
or convert it to the quantity of our relevance. This is referred to as Calibration .

This is possible since ADC reports a ratiometric value ie, there is a direct one-is-to-one correlation
between the input value and the digitized ADC channel number.

UGC DAE CSR
KC

1-18 Lecture 1: Getting Started with Arduino

Figure 1.13: View the results on the Serial Monitor.

For example, using the on-board 10 bit ADC, we have the following relation

0 V −→ 0 channel
5 V −→ 1023 channel

volt

channel
=

5

1023

unknown voltage =
5

1023
× channel

Offcourse we have to bear in mind, that while the ADC channel is an integer , the mapped voltage
would be a real number .

// read the input on analog pin 0:
int sensorValue = analogRead(A0);

// Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V):
float voltage = sensorValue * (5.0 / 1023.0);

The code below allows us to measure a voltage using the Analog input pin, which then is displayed
on the Serial Monitor (Fig.1.14). Offcourse, we have to bear in mind this voltage cannot exceed
5 volt.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-19

1 // the setup rout ine runs once when you pres s r e s e t :
2 void setup () {
3 // i n i t i a l i z e s e r i a l communication at 9600 b i t s per second :
4 S e r i a l . begin (9600) ;
5 }
6

7 // the loop rout ine runs over and over again f o r eve r :
8 void loop () {
9 // read the input on analog pin 0 :

10 i n t sensorValue = analogRead (A0) ;
11 // Convert the analog reading (which goes from 0 - 1023) to a vo l tage (0 - 5V) :
12 f l o a t vo l tage = sensorValue ∗ (5 . 0 / 1023.0) ;
13 // pr int out the value you read :
14 S e r i a l . p r i n t l n (vo l tage) ;
15 delay (1000) ;
16 }

Read Analog Voltage

Figure 1.14: Measured voltage on the Serial Monitor.

1.6.3 Time Stamped Data

Many a times, we may have to record, a time stamped data, ie, we need to record the time along
with the data. However, we are not interested in the absolute time, but we need the relative time
information between the recorded data.

We could use the inbuilt millis() function, which records the number of milliseconds that have
elapsed since the program started running. It is expected to overflow after several days. The value
returned is an unsigned long. The pseudo code for doing so would be :

UGC DAE CSR
KC

1-20 Lecture 1: Getting Started with Arduino

start_tim = millis() in the initialization routine
current_tim = millis() in the main loop
elapsed_tim = current_tim - start_tim in the main loop

The Sketch to achieve is presented blow, and the results are illustrated in Fig.1.15.

1 unsigned long s t a r t M i l l i s ;
2 unsigned long c u r r e n t M i l l i s ;
3 unsigned long now ;
4 void setup () {
5 // i n i t i a l i z e s e r i a l communication at 9600 b i t s per second :
6 S e r i a l . begin (9600) ;
7 // i n i t i a l i z e s t a r t time :
8 s t a r t M i l l i s = m i l l i s () ;
9 }

10

11 // the loop rout ine runs over and over again f o r eve r :
12 void loop () {
13 c u r r e n t M i l l i s = m i l l i s () ;
14 now = c u r r e n t M i l l i s - s t a r t M i l l i s ;
15 i n t sensorValue = analogRead (A0) ;
16 f l o a t vo l tage = sensorValue ∗ (5 . 0 / 1023.0) ;
17 S e r i a l . p r int (now) ;
18 S e r i a l . p r int (”\ t ”) ;
19 S e r i a l . p r i n t ln (vo l tage) ;
20 delay (5000) ;
21 }

Time Stamped Data

The first few readings (maximum two-three), may have to be ignored due to settling down time,
which can be circumvented by a delay(1000) command in the initialization routine.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-21

Figure 1.15: Time Stamped Data on the Serial Monitor.

UGC DAE CSR
KC

1-22 Lecture 1: Getting Started with Arduino

1.7 Temperature Measurement using LM35

1.7.1 LM35 Temperature Sensor

The LM35 is precision integrated-circuit temperature device whose output voltage is linearly pro-
portional to the Centigrade temperature. It has a fairly linear calibration of ∼ 10 mV/0C. The
pin configuration is depicted in Fig. 1.16.

Figure 1.16: Pin Configuration for the LM 35.

1.7.2 Circuit Diagram

The LM35 can derive the power directly from the Arduino, and the output pin is connected to one
of the analog input pins, Fig. 1.17.

Figure 1.17: Connecting the LM 35 to the Arduino.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-23

1.7.3 Sketch for temperature measurement

The pseudo-code to perform a temperature measurement with LM35 is :

pinMode(PWM_out_pin, OUTPUT);
// Define one of the Analog pins as the INPUT pin in the initialization routine
#define sensorPin A0;

// Read the ADC value for the pre defined input pin
int reading = analogRead(sensorPin);

// Convert the reading into voltage:
float voltage = reading * (5000 / 1024.0);

// Convert the voltage into the temperature in degree Celsius:
float temperature = voltage / 10;

The code below (Ref. https://www.makerguides.com) allows us to measure the temperature using
LM35 and display the results on the Serial Monitor.

UGC DAE CSR
KC

1-24 Lecture 1: Getting Started with Arduino

1 // Define to which pin o f the Arduino the output o f the LM35 i s connected :
2 #de f ine sensorPin A0
3

4 void setup () {
5 // Begin s e r i a l communication at a baud rate o f 9600:
6 S e r i a l . begin (9600) ;
7 }
8

9 void loop () {
10 // Get a reading from the temperature sensor :
11 i n t reading = analogRead (sensorPin) ;
12

13 // Convert the reading into vo l tage :
14 f l o a t vo l tage = reading ∗ (5000 / 1023.0) ;
15

16 // Convert the vo l tage into the temperature in degree Ce l s iu s :
17 f l o a t temperature = voltage / 10 ;
18

19 // Print the temperature in the S e r i a l Monitor :
20 S e r i a l . p r int (temperature) ;
21 S e r i a l . p r int (” \xC2\xB0”) ; // shows degree symbol
22 S e r i a l . p r i n t ln (”C”) ;
23

24 delay (1000) ; // wait a second between readings
25 }

Temperature Measurement with LM35

1.7.4 Results

The results are illustrated pictorially in Fig. 1.18, which are consistent with the results of measure-
ments performed using other temperature recording equippment.

Figure 1.18: Display of the Temperarure on the Serial Monitor.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-25

1.8 Temperature Measurement Using DHT 11

1.8.1 Introduction

The DHT11 module has an inbuilt temperature (a negative temperature coefficient thermistor) &
humidity sensor module. The onboard components measures and processes the analog signal with
stored calibration coefficients, and converts the analog signal to the corresponding digital value and
outputs the signal which encodes the temperature and humidity.The shield has all the necessary
components, so that we can integrate it with the Arduino, without any additional components.
The pin details are presented in Fig. 1.19.

Figure 1.19: Pin configuration of the DHT11 module (The configuration is vendor dependent.)

1.8.2 Installing the DHT11 Library

The DHT11 has a failt simple connection :

V cc −→ + 5 V from Arduino
Gnd −→ Ground from Arduino
Data −→ Pin 8

The connections are illustrated in Fig. 1.20.

1.8.3 Installing the DHTLib

DHT11 sensors have their own single wire protocol for transferring the data. This protocol requires
precise timing. Fortunately, DHT Library was written to hide away all the complexities so that
the various operations are transparent to the user, who could issue the commands to read the
temperature and humidity data, without getting caught in the protocols.

UGC DAE CSR
KC

1-26 Lecture 1: Getting Started with Arduino

Figure 1.20: Connecting the DTH11 module to the Arduino.

The procedure to add a library is to use the inbuilt library manager, which can be activated, via
the Tools −→ Manage Libraries , and type DHTLib , and if the library is not installed it would
prompt you to install the same. This is presented in Fig. 1.21.

Figure 1.21: Installing the library for the DTH11 module.

1.8.4 Sketch for DHT11

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-27

1 #inc lude <dht . h>
2

3 dht DHT;
4

5 #de f ine DHT11_PIN 8
6

7 void setup () {
8 S e r i a l . begin (9600) ;
9 }

10

11 void loop () {
12 i n t chk = DHT. read11 (DHT11_PIN) ;
13 S e r i a l . p r int (”Temperature = ”) ;
14 S e r i a l . p r i n t ln (DHT. temperature) ;
15 S e r i a l . p r int (”Humidity = ”) ;
16 S e r i a l . p r i n t ln (DHT. humidity) ;
17 delay (1000) ;
18 }

Temperature Measurement with DHT 11

1.9 Temperature Measurement Using Thermistor

1.9.1 Thermistors

Since we need to automate the temperature measurement, we would be using a combination of

• Negative Temperature Coefficient (NTC) thermistors . These are essentially resistors with a
negative temperature coefficient, ie. following an increase in the temperature correspondingly
the resistance decreases.

• Microcontroller However, a microcontroller does not have a built-in provision / facility of an
ohmmeter. It can only read in an Analog voltage due to the inbuilt Analog-Digital-Converter.
Hence, we need to employ a circuit wherein the measured voltage is related to the resis-
tance. This is achieved using the familiar voltage divider circuit, presented in Fig.1.22.

Vin

R1

R2

Vout

Gnd

Figure 1.22: Voltage Divider.

UGC DAE CSR
KC

1-28 Lecture 1: Getting Started with Arduino

Since, for a voltage divider the relation between Vin & Vout is

Vout = Vin · R2

R1 +R2

If any of the above three quantities are known, the fourth can be determined. Therefore, to
convert the resistance of the NTC, thermistor into a corresponding voltage, and we connect
it in series as R2 with another known resistance, say R1 = 10, 000 Ω. We then measure the
voltage in the middle, and as the resistance changes, the voltage changes too, in accordance
with the above voltage-divider equation.

• The above procedure helps obtain the value of the resistance of the NTC thermistor, which
offcourse is a function of the temperature. However, the final aim is to obtain / measure the
temperature. The Steinhart-Hart equation, which to attempts to model the thermistor
resistance as a function of temperature, and is given by

1

T
= A+Bln(R) + C

[
ln(R)

]3
T : temperature (in Kelvin)
R : resistance at T (in ohms)

A, B & C : are the Steinhart Hart coefficients

This equation at times for the NTC thermistors also be characterised with the B or β pa-
rameter equation given by

1

T
=

1

T0
+

1

B
ln

[
R

R0

]
T0 : room temperature (in Kelvin) = 250 C = 298.15K

R0 : resistance at room temperature ∼ 10KΩ

B : in this case ∼ 3950coefficient of the thermistor

1.9.2 Circuit

1.9.3 Sketch to record temperature

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-29

Figure 1.23: Circuit for connecting the thermistor to the Arduino.

1 byte NTCPin = A0;
2 #de f ine SERIESRESISTOR 10000
3 #de f ine NOMINAL_RESISTANCE 10000
4 #de f ine NOMINAL_TEMPERATURE 25
5 #de f ine BCOEFFICIENT 3950
6

7 void setup ()
8 {
9 S e r i a l . begin (9600) ;

10 }
11 void loop ()
12 {
13 f l o a t ADCvalue ;
14 f l o a t Res i stance ;
15 ADCvalue = analogRead (NTCPin) ;
16 S e r i a l . p r int (”Analoge ”) ;
17 S e r i a l . p r int (ADCvalue) ;
18 S e r i a l . p r int (” = ”) ;
19 // convert value to r e s i s t a n c e
20 Resistance = (1023 / ADCvalue) - 1 ;
21 Resistance = SERIESRESISTOR / Res istance ;
22 S e r i a l . p r int (Res i stance) ;
23 S e r i a l . p r i n t l n (” Ohm”) ;
24

25 f l o a t s t e i nha r t ;
26 s t e inha r t = Res istance / NOMINAL_RESISTANCE; // (R/Ro)
27 s t e inha r t = log (s t e i nha r t) ; // ln (R/Ro)
28 s t e inha r t /= BCOEFFICIENT; // 1/B ∗ ln (R/Ro)
29 s t e inha r t += 1.0 / (NOMINAL_TEMPERATURE + 273.15) ; // + (1/To)
30 s t e inha r t = 1.0 / s t e inha r t ; // Invert
31 s t e inha r t -= 273 .15 ; // convert to C
32

33 S e r i a l . p r int (”Temperature ”) ;
34 S e r i a l . p r int (s t e i nha r t) ;
35 S e r i a l . p r int (” \xC2\xB0”) ;
36 S e r i a l . p r i n t l n (”C”) ;
37 delay (10000) ;
38 }

Temperature Measurement with Thermistor

UGC DAE CSR
KC

1-30 Lecture 1: Getting Started with Arduino

Since we know that in the above code two readings are spaced by 10 second time interval, we should
be able to save this data to a file and then plot the temperature variation as a function of time.

1.10 PWM : Fade a LED

1.10.1 Introduction

Pulse Width Modulation, or PWM, is a technique for mimicking analog results using digital
signals. Digital control is used to create a square wave, a signal switched continuously, between the
ON, HIGH and OFF, LOW states. This repetitive on-off pattern can simulate voltages in between
full on (5 Volts) and off (0 Volts) by changing the portion of the time the signal spends ON versus
the time that the signal spends OFF.

Offcourse, the response of the load which receives this signal is slower than the frequency of the
pulse. For an LED, using PWM causes the light to be turned on and off at frequency than our eyes
cannot detect. We simply perceive the light as brighter or dimmer depending on the widths of
the pulses in the PWM output.

The various terms of relevance for PWM are

1. On-Time, the duration for which the signal is HIGH τo.

2. Period, the time taken for one complete oscillation.

3. Duty-Cycle, the percentage of time for which the signal remains ON, during the period of
the signal, τo/τc.

Figure 1.24: Nomenclature for PWM .

The output of a PWM channel is available on digital I/O pins 3, 5, 6, 9, 10 and 11. These pins
can be identified as they have the symbol before the corresponding pin numbers. When this is
supplied to a load whose response is slower than that of the frequency of the pulse, this appears to

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-31

the load as an effective voltage of

Veff = Vs
τ0
τc

Thus the output voltage is a function of the duty cycle, for a 100% duty cycle, the output, would
be 5 volt, whereas a 50% duty cycle would result in an output of 2.5 volt.

Now, the analogWrite (PWM pin no, level) function can be used to achieve this, where the pa-
rameter level is an 8 bit integer, which can be set to obtain the desired duty cycle, which in turn
governs the effective voltage as experienced by the slow load.

We know that since the parameter is a 8 bit integer, it’s maximum value is 255. Thus we can use
the scaling of 5 V −→ 255, hence the desired voltage could be set as Vo

5 × 255, where Vo is the
desired effective analog voltage.

The pseudo-code to achieve this is

pinMode(PWM_out_pin, OUTPUT);
// Define one of the PWM pins as the OUTPUT pin in the initialization routine

analogWrite(PWM_out_pin, level);
// Set the duty cycle to the integer corresponding to the parameter level

The code below allows us to fade an LED, connected to pin number 9.

UGC DAE CSR
KC

1-32 Lecture 1: Getting Started with Arduino

1 i n t l ed = 9 ; // the PWM pin the LED i s attached to
2 i n t br ightnes s = 0 ; // how br ight the LED i s
3 i n t fadeAmount = 5 ; // how many points to fade the LED by
4

5 // the setup rout ine runs once when you pres s r e s e t :
6 void setup () {
7 // dec la re pin 9 to be an output :
8 pinMode(led , OUTPUT) ;
9 }

10

11 // the loop rout ine runs over and over again f o r eve r :
12 void loop () {
13 // se t the br ightnes s o f pin 9 :
14 analogWrite (led , br ightnes s) ;
15 // change the br ightnes s f o r next time through the loop :
16 br ightnes s = br ightnes s + fadeAmount ;
17

18 // reve r s e the d i r e c t i o n o f the fading at the ends o f the fade :
19 i f (br ightnes s <= 0 | | br ightnes s >= 255) {
20 fadeAmount = - fadeAmount ;
21 }
22 // wait f o r 30 mi l l i s e co nd s to see the dimming e f f e c t
23 delay (30) ;
24 }

Fade a LED using PWM

1.11 Charging of Capacitor

1.11.1 Introduction

A capacitor is made of a dielectric material within two parallel plates. When a battery is connected
to a capacitor, positive charge collects on one plate and negative charge collects on the other plate
until the potential difference between the two is equal to the voltage of the battery.

The capacitance is defined as the ratio between Q and V , where Q is the charge imbalance needed
to produce a given voltage V across the capacitor.

C =
Q

V

Some electrical circuits contain both resistors and capacitors. These are called capacitor RC
circuit (Fig.1.25). If the initial voltage applied to an RC circuit is V0, and the capacitance of the
capacitor is C, and the resistance of the resistor is R, then the amount of time, t, it takes for the
capacitor to reach the charge, Q, is given by:

Q = C · V0

(
1 − e

[
t

RC

])
V (t) = V0

(
1 − e

[
t

RC

])

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-33

V (t) is the voltage across the capacitor at time t

Figure 1.25: Series RC circuit.

1.11.2 Circuit

The circuit diagram, for investigating the charging of a capacitor, using magenta is presented in
Fig.1.26.

Figure 1.26: Circuit diagram.

We will use one of the digital outputs of Arduino to start the charging of the capacitor, say Pin

UGC DAE CSR
KC

1-34 Lecture 1: Getting Started with Arduino

13.

Before restarting a new run, discharge the capacitor , by removing it from the circuit and shorting
the two terminals manually

1.11.3 Sketch for Acquiring Data

1 i n t SensorValue = 0 ;
2 i n t l ed = 13 ;
3 i n t data ;
4 f l o a t Voltage1 = 0 . 0 ;
5 f l o a t Voltage2 = 0 . 0 ;
6 long unsigned now = 0.0 ;
7 long unsigned then = 0.0 ;
8 long unsigned e lapsed = 0.0 ;
9

10 void setup () {
11 // put your setup code here , to run once :
12 pinMode(LED_BUILTIN, OUTPUT) ;
13 S e r i a l . begin (9600) ;
14 d ig i ta lWr i t e (led , LOW) ;
15 delay (10000) ;
16 d ig i ta lWr i t e (led , HIGH) ;
17 then = m i l l i s () ;
18 }
19

20 void loop () {
21 // put your main code here , to run repeated ly :
22 SensorValue = analogRead (A0) ;
23 now = m i l l i s () ;
24 Voltage1 = SensorValue ∗ (5 .0/1023 .0) ;
25 e lapsed = now - then ;
26 S e r i a l . p r int (e lapsed) ;
27 S e r i a l . p r int (”\ t ”) ;
28 // S e r i a l . p r int (” , ”) ;
29 S e r i a l . p r i n t l n (Voltage1) ;
30 delay (1000) ;
31 }

Study the Charging of the Capacitor

1.11.4 Procedure

Once we start the charging, by setting the above pin to high state, (Lines 15), prior to doing so,
we wait sufficiently long enough (Line 14) for us to fire up the serial terminal, on which we output
the result.

We need to disable the auto scroll as well as set the baud rate to 9600 the same value we
had set in our code.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-35

Since, we have a 10 bit ADC, it has 210 = 1024 channels, which are used to store a maximum of 5
Volt. Using this information we can map the ADC voltage into the corresponding voltage, which
ten is displayed on the screen.

On the monitor we observe the time and the voltage across the capacitor . These values are
seperated either by a tab (Line 26), or by a comma, if we were to activate the next line, and
comment the previous line. Accordingly in the analysis routine, we will have to set the delimiter .

These values are to be copied to an ASCII file, which is achieved, by

1. Use the command CNTR+A , which selects all

2. Copy the selected contents using the familiar CNTR+C command.

3. Open the Python GUI

4. Select the File option and the New File sub-menu

5. In the poped up empty window CNTR+V to copy the contents

6. Save the file as a .txt file by choosing the option as txt in the Save As sub-menu. You may
store the file in any appropriate sub directory.

7. Scroll down to the end of the file and ensure that the last line is complete. Delete any half
written file.

The program is terminated by closing the serial monitor

The IDE does not allow us to store the values into a file, hence the round about way to copy-paste
the values from the serial monitor into an ASCII file, which can be later analyzed using Python,
or any other toolkit or software.

1.11.4.1 Analysis Of The Acquired Data

We can read back the data stored in the file, and using the value of the time calculate

1. Voltage across the resistor at that instance (Line-21).

2. The theoretical value of the voltage across the capacitor (Line 25).

The following code is used for the analysis of the stored data, and the results are presented in
Fig.1.27.

UGC DAE CSR
KC

1-36 Lecture 1: Getting Started with Arduino

1 import numpy as np
2 import matplot l ib . pyplot as p l t
3 import os
4

5 r = 100000
6 c = 220E-06
7 Vin=5.0
8 f1 = open (’ ssg1 . txt ’ , ’ r ’)
9 header1=f1 . r ea d l i n e () # skip the header

10 data1 = np . genfromtxt (f1 , d e l im i t e r=’ \ t ’)
11 #data1 = np . genfromtxt (f1 , d e l im i t e r = ’ , ’)
12 y_vr=[] # array to s to r e the vo l tage acros s the r e s i s t o r
13 y_vc_theo=[] # arry to s to r e the ca l cu l a t ed vo l tage acros s capac i to r
14 temp1 = 0.0 # temporary var i ab l e
15 temp2 = 0.0 # temporary var i ab l e
16 tau = r ∗c # tau of the c i r c u i t
17

18 x_time=data1 [: , 0]
19 y_vc=data1 [: , 1]
20

21 f o r i in range (len (x_time)) :
22 temp1 = 5.0 - y_vc [i]
23 y_vr . append (temp1)
24 temp2 = Vin - Vin∗(np . exp ((- x_time [i]) /(r ∗c)))
25 y_vc_theo . append (temp2)
26 temp1=0.0
27 temp2=0.0
28

29 f1 . c l o s e ()
30 X=[0 , tau ,10∗ tau ,100∗ tau]
31 Y=[0.63∗Vin , 0 . 63∗ Vin , 0 . 63∗ Vin , 0 . 63∗ Vin] # f o r observing tau
32 p l t . p lot (X,Y, ”r - - ”)
33 p l t . p lot (x_time , y_vc , ”go” , l a b e l=”Expt”)
34 p l t . p lot (x_time , y_vc_theo , ”b∗” , l a b e l=” Theoret i ca l ”)
35 p l t . legend (l o c=” best ”)
36 p l t . x l abe l (’Time (second) ’)
37 p l t . y l abe l (’ Voltage acros s capac i to r ’)
38 p l t . xlim (0 ,max(x_time))
39 p l t . gr id ()
40 p l t . show ()

1.11.5 Results

From the figure, we observe that the experimental data is in agreement with the theoretical value,
and we can also confirm the value of the time constant from this graph.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-37

Figure 1.27: Voltage across the capacitor during charging.

1.12 Astable Multivibrator using 555 Timer

1.12.1 Introduction

Astable multivibrator has no stable state . It keeps on oscillating between the two states. In a
555 timer, we bring about a transition between the states, using the voltage developed across a
capacitor during charging and discharging. Hence, there is a correlation between the output voltage
and the voltage across the capacitor, which can be viewed using a two channel oscilloscope.

1.12.2 555 Timer

The linear ICs 555 timer was first introduced in early 1970 is one of the most versatile workhorse
in both hobby as well as professional electronics. This IC is a monolithic timing circuit that
can produce accurate and highly stable time delays or oscillation. Besides it is easily available
and is reliable as well as economical. It has a variety of applications including, the most impor-
tant being it?s use as a multivibrator, and it?s ability to provide the inputs for a digital TTL
(Transistor-Transistor Logic), which relies on transistors to achieve switching and maintain logic
levels (0 V ≤ Vlow ≤ 2V & 2.7 V ≤ Vhigh ≤ 5 V)

The IC can operate under a wide range of input voltage +5 V ≤ V ≤ + 18 V , besides also has
a wide operating temperature range from 00C to 70oC. Further, it can source (ability to deliver)
or sink (the ability to receive current) about 200 mA of current.

UGC DAE CSR
KC

1-38 Lecture 1: Getting Started with Arduino

The IC is routinely available as an 8pin mini DIP (dual-in-package) and comprises of 23 transistors,
2 diodes and 16resistors. The pin configuration of the IC is pictorially presented in Fig.1.28.

Figure 1.28: The pin configuration of the 555 timer IC.

The primary building blocks (depicted in Fig.1.29) of the IC are

1. Voltage Divider

2. Comparators

3. RS Flip Flop

Comparator as the name suggest is a device that essentially compares the voltages at the input
terminals produce an output voltage dependent upon the voltage difference at their inputs. On
the other hand a fip-flop , has two stable states and can be used to store state information, and
accordingly produces either a HIGH or LOW level output at Q based on the states of its inputs.
It also has a complementary Q output.

The three 5kΩ resistors connected in series internally (this is how the chip got it?s name) which
produce a voltage divider network (a simple circuit which turns a large voltage into a smaller
one) between the supply voltage at Pin-8 and ground at Pin11. The voltage across this series
resistive network holds the negative inverting input of comparator two at 2

3 Vcc and the positive
non-inverting input to comparator one at 1

3 Vcc.

The two comparators produce an output voltage dependent upon the voltage difference at their
inputs. The outputs from both comparators are connected to the two inputs of the flip-flop. The
complimentary output Q of the flip-flop is used to control a high current output switching stage to

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-39

Figure 1.29: A simplified block diagram illustrating the internal functional blocks of the 555 timer.

drive the connected load producing either a HIGH or LOW voltage level at the output pin.

Suppose we use Vcc = 9V , then a voltage of 6 V = 2
3 × 9, at the positive input of comparator-II,

Pin-6 would cause it?s output to go HIGH, which in turn being applied to the RESET terminal
which causes the FF to get reset (a transition from HIGH to LOW). Similarly when the voltage
drops below 3 V = 1/3 × 9 at the negative terminal of comparator-I, whose output is connected
to the SET input of the FF, causes the FF to make a transition from LOW to HIGH.

Pin-1 serves as the ground pin and all voltages are measured with respect to this pin.

The supply voltage of +5 V to + 18 V is applied to Pin-8, with respect to ground, Pin-1.

Output of the timer is available at Pin-3 and is capable of driving TTL circuits and as mentioned
earlier it can source or sink about 100 mA of current. There are two ways in which a load can
be connected to the output terminal. One way is to connect it between output Pin-3 and ground
Pin-1 referred to as normally off load or between Pin-3 and supply Pin-8, termed as normally on
load.

Whenever the timer IC is to be reset or disabled, a negative pulse is applied to Pin-4, and hence
this pin is termed as RESET terminal. The output is reset irrespective of the input condition.
When this pin is not to be used for reset purpose, it should be connected to +Vcc to avoid any
possibility of false triggering.

We refer to Pin-7 as Discharge Terminal & it is connected internally to the collector of transistor

UGC DAE CSR
KC

1-40 Lecture 1: Getting Started with Arduino

and routinely a capacitor is connected between this terminal and ground. It is called discharge
terminal because when transistor saturates, capacitor discharges through the transistor. When
the transistor is cut-off, the capacitor charges at a rate determined by the external resistor and
capacitor.

Pin-5 is termed as Control Voltage Terminal. The threshold and trigger levels are controlled using
this pin. The external voltage applied to this pin can also be used to modulate the output waveform
and the width. When this pin is not used, it should be bypassed to ground through a 0.01µFarad
capacitor to avoid any noise problems.

A multi-vibrator is a circuit which usually has two states and it oscillates or switches under
external condition between these states. An Astable multi-vibrator has no stable states and keeps
switching from one state to another. The Mono-stable multi-vibrator has one stable state, and
under an external input it switches to the unstable state and then returns to it?s stable state.
The Bistable multi-vibrator as it?s name suggests has both the states as stable, and the switching
between them is achieved using two terminals SET and RESET.

The Astable multi-vibrator is also referred to as Free Running Multivibrator, as it switches be-
tween the two states on it?s own without need for any external circuitry. The circuit diagram for
configuring the 555 timer as an astable multi-vibrator is shown in the Fig.

The Trigger Pin-2 and Threshold Pin-6 are connected to the capacitor, whose value governs the
output of the Timer. The capacitor C charges through both R1 & R2, while discharges only through
R2. Since the Control Voltage pin is not used, the output of 555 will be HIGH when the capacitor
voltage goes below 1/3Vcc, and the output will go LOW when the capacitor voltage goes above 2/3Vcc.

When the circuit is switched ON, and as the capacitor C would be initially uncharged voltage
will be less than 1/3Vcc. So the output of the lower comparator will be HIGH and that of the
upper comparator will be LOW. This would SET the output of the Flip-flop, which forces the
discharging transistor to be OFF and allows the capacitor C to start charging from Vcc through
resistor R1 & R2. The charging continues till the capacitor voltage is < 2/3Vcc,

Thigh = 0.693 ×
[(
R1 + R2

)
× C

]
When the capacitor voltage is 2/3Vcc the FF is RESET , and the transistor is turned ON. This
allows the capacitor to start discharging through R2 and the voltage across it starts decreasing

Tlow = 0.693 ×
[
R2 × C

]
This continues till the capacitor voltage is less than 1/3Vcc. This SET’s the FF and the capacitor
starts charging once again. This process continues and a rectangular wave (Fig.1.30) is obtained

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-41

at the output with

Frequency =
1[

Thigh + Tlow

]
=

1.44[
R1 + 2×R2

]
× C

The Duty Cycle , is given by

Duty Cycle =

[
Thigh

(Thigh + Tlow)

]

Figure 1.30: Waveforms for 555 timer as Astable Multivibrator.

1.12.3 Circuit

The circuit diagram for an Astable Multivibrator is presented in the Fig.1.31.

If we do not wish to assemble the circuit from the components, an open source Arduino compatible
NE555 Pulse Frequency Duty Cycle Adjustable Module Square Wave Signal Generator is readily
available, and is depicted in Fig. 1.32.

If we were to use the above board, then we can use the 5 Volt and the ground rails from the Arduino
board.

The output pin from the 555 timer be connected to any one of the analog input terminals of the
µ-controller, say A0 .

UGC DAE CSR
KC

1-42 Lecture 1: Getting Started with Arduino

Figure 1.31: Circuit Diagram for 555 timer as Astable Multivibrator.

Figure 1.32: Open source 555 timer board.

1.12.4 Sketch for Acquiring Data

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-43

1 i n t SensorValue = 0 ;
2 f l o a t Voltage1 = 0 ;
3 unsigned long s t a r t M i l l i s ;
4 unsigned long c u r r e n t M i l l i s ;
5 unsigned long now ;
6

7 void setup () {
8 // i n i t i a l i z e s e r i a l communication at 9600 b i t s per second :
9 S e r i a l . begin (9600) ;

10 // i n i t i a l i z e s t a r t time :
11 s t a r t M i l l i s = m i l l i s () ;
12 }
13

14 // the loop rout ine runs over and over again f o r eve r :
15 void loop () {
16 c u r r e n t M i l l i s = m i l l i s () ;
17 now = c u r r e n t M i l l i s - s t a r t M i l l i s ;
18 SensorValue = analogRead (A0) ;
19 Voltage1 = SensorValue ∗ (5 . 0 / 1023.0) ;
20 S e r i a l . p r int (now) ;
21 S e r i a l . p r int (”\ t ”) ;
22 S e r i a l . p r i n t ln (Voltage1) ;
23 delay (10) ;
24 }

Study Of 555 timer

Now, in the above code, if we were to comment out Lines 20-21 and view the results on the inbuilt
serial monitor, we would observe the Fig. 1.33.

Figure 1.33: Square wave output from 555 timer.

Now, if we were to run the above sketch with the two lines uncommented, then on theserial monitor,
we would observe a tab seperated two column data.

We can save the data CTRL+A ; CTL+C and then paste it in a plain ASCII file, using the Python
IDLE.

UGC DAE CSR
KC

1-44 Lecture 1: Getting Started with Arduino

1.12.5 Analysis of the Data

The following Python code (astable_mv.py), allows us to read the data„and plot it, which is pre-
sented in Fig.1.34.

1 import numpy as np
2 import matplot l ib . pyplot as p l t
3 import os
4

5 f1 = open (’ 555_timer . txt ’ , ’ r ’)
6 header1=f1 . r ea d l i n e () # skip the header
7 data1 = np . genfromtxt (f1 , d e l im i t e r=’ \ t ’)
8

9 x_time=data1 [: , 0] / 1 0 0 0 . 0
10 y_vc=data1 [: , 1]
11 f1 . c l o s e ()
12

13 p l t . p lot (x_time , y_vc , ”g - - ”)
14 p l t . x l abe l (’Time (second) ’)
15 p l t . y l abe l (’ Output Voltage ’)
16 p l t . t i t l e (’ 555 Timer as Astable Mult iv ibrator ’)
17 p l t . xlim (0 ,max(x_time /2 .0))
18 p l t . gr id ()
19 p l t . show ()

Figure 1.34: Square wave from the 555 timer board.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-45

1.12.6 Results

We can calculate the Time period from the x-axis reading, for one complete cycle, from the graph.

When we view the plot, then as we move the cursor over the plot, we are able to observe the x & y
co-ordinates. The x would give us the time, we have scaled the x_data, from milli-seconds to
seconds.

1.13 Transistor as a switch

1.13.1 Introduction

A transistor , is a three-layered, two junction device, semiconductor device, Fig.1.35.

These devices are also referred to as Bipolar Junction Transisitor (BJT) , due two the presence of
two types of charge carriers viz., holes and electrons.

Figure 1.35: Bipolar Junction Transistor.

The Emitter, is heavily doped and is the source of the majority charge carriers. The Base, is lightly
doped and has a relatively smaller cross sectional area. The Collector has a relatively large cross
sectional area, so as to efficiently receive the charge carriers which flow into this region.

The Emitter-Base junction is forward biased , while the Collector-Base junction is reversed
biased, under normal operating conditions.

We know that a transistor can be used a switch, to control the flow of current to a particular device.

UGC DAE CSR
KC

1-46 Lecture 1: Getting Started with Arduino

It is based on the principle of operation of a transistor, that a transistor is operational only when
we have provided it a base drive (current), besides other factors, regarding the biasing of the
emitter-base and collector-base junctions.

When the voltage at the base is greater than 0.6V, the transistor starts saturating and looks like a
short circuit between the collector and the emitter. When the voltage at the base is less than 0.6V
the transistor is in cutoff mode. This is pictorially illustrated in Fig.1.36.

Figure 1.36: BJT as switch.

Hence, the base drive can be provided from a micro-controller, and accordingly the transistor be
made to operate analogous to a mechanical switch.

In Fig.1.37, if we were to provide a base drive (voltage) greater than 0.6 V, then the transistor
would act as an closed switch and the path for the flow of current is established, so that the LED
will GLOW.

In absence of any base drive, we have the transistor as an closed switch, which impends the flow
of current and accordingly, the LED is OFF.

1.13.2 Circuit

Now, we can connect the Digital Pin 13 to the base of the transistor, and on execution of the Blink
script, both the onboard and LED would blink simultaneously.

This is due to the fact that when, we make the Digital Pin 13 HIGH, we do provide a base drive
to the transistor, which drives the transistor, into saturation, and the base and emitter get short,
enabling flow of current, and as a consequence, the LED is ON.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-47

Figure 1.37: Transistor as a switch.

1.13.3 Determination of Planck’s Constant from this circuit

We know that when the transistor is operating as a closed switch, we have the LED getting
forward biased, and allowing the passage of current through it.

Under this condition, if we were to measure the voltage after the LED, when it is ON, we would
be able to compute it’s Vknee = Vg, from the quantity Vcc − Vled.

Figure 1.38: Determination of h.

UGC DAE CSR
KC

1-48 Lecture 1: Getting Started with Arduino

1 i n t ledPin = 13; // LED connected to d i g i t a l pin 9
2 i n t SensorValue =0;
3 f l o a t Voltage =0.0;
4

5 void setup () {
6 pinMode(LED_BUILTIN, OUTPUT) ;
7 S e r i a l . begin (9600) ;
8 }
9

10 void loop () {
11 // fade in from min to max in increments o f 5 poi
12 d ig i ta lWr i t e (ledPin , HIGH) ;
13 SensorValue=analogRead (A0) ;
14 Voltage = SensorValue ∗(5 .0/1023 .0) ;
15 S e r i a l . p r i n t l n (Voltage) ;
16 delay (5000) ;
17 d ig i ta lWr i t e (ledPin , LOW) ;
18 SensorValue=analogRead (A0) ;
19 Voltage = SensorValue ∗(5 .0/1023 .0) ;
20 S e r i a l . p r i n t l n (Voltage) ;
21 delay (5000) ;
22

23 }

Determination of Planck’s Constant

Now, we know that the vg, is related to the Planck’s Constant h as

h =
e× Vg × λg

c

We have used coloured LEDs and have extracted the Vg, from the ON condition of the LED. The
data on the corresponding λ has been obtained from the literature, and remains the main source
of uncertainty in the extraction of h. The results are summarized in the table below

Color λg|nm Vg|volt h|joule−second

Red 665 1.84 6.36 × 10−34

Yellow 590 1.95 6.52 × 10−34

Green 560 1.94 6.13 × 10−34

Orange 635 1.88 5.79 × 10−34

1.14 Time Period of Pendulum

1.14.1 Introduction

We know that the time period (T) of a simple pendulum is the time taken by the pendulum to
perform one complete oscillation.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-49

It is related to the length l of the pendulum and acceleration due to gravity g at that place, such
that

T = 2π

√
l

g

Hence, the problem boils down to performing an accurate time measurement, devoid of human
errors such as response time etc.

One possible solution is to use an infrared obstacle sensor , which produces a change in a sig-
nal, when an object interrupts or blocks the beam from an IR receiver on to the transmitter.
Commercially such modules are referred to as IR Proximity Sensor.

1.14.2 Proximity Sensor

The IR Proximity sensor is based on the principle of IR reflectance. IR light is constantly emitted
by an IR LED, which is received by an IR Receiver LED / Photo-diode, placed in it’s direct line of
sight. This signal is processed by an Op-Amp and the Op-Amp produces say for example a HIGH
signal. Thus if the sensor detects an object it will produce a high signal.

The IR transmitter is a light emitting diode which emits Infra-Red radiations whose wavelength is
typically around 700 nm− 100 nm. They are very similar to normal LED in appearance.

Infrared receivers detect the radiation from an IR transmitter. IR receivers come in the form of
photo-diodes and photo-transistors. Infrared Photo-diodes are different from normal photo diodes
as they detect only infrared radiation.

We usually place both the transmitter and receiver in direct line of sight for this experiment, and
detect the interruption of the IR beam, due to the passage of the bob of the pendulum.

Hence, when the bob of the pendulum obstructs the transmitter and receiver, we should get a
blip in the voltage level (a change in the level, say from HIGH −→ LOW or vice versa). A
representative circuit diagram is presented in the left panel of Fig.1.39.

These are available commercially as well, right panel of Fig.1.39. In case you use the commercial
module, then the IR transmitter and receiver would have to be de-soldered from the pcb, and
physically mounted either on a PCB or a breadboard, facing each other.

A simplified version of this presented in Fig.1.40 , could also be used. Care has to be taken to
ensure that the bob of the pendulum passes through the line of sight of the transmitter and receiver,
without colliding with them (Fig.1.41).

In one oscillation, the bob intercepts the receiver and transmitter three times. Hence, the time
difference between three “blips” or “LOW signal” would give us the time period (Fig.1.42).

The code to capture the data is exactly identical to the one used to record the voltage across the
capacitor during charging.

UGC DAE CSR
KC

1-50 Lecture 1: Getting Started with Arduino

Figure 1.39: Proximity Sensor.

Figure 1.40: IR Transmitter & Receiver coupled to Arduino.

Figure 1.41: Experimental Setup.

1.14.3 Analysis

The stored data is then read back using the code (pendulum.py). Since the time is in milli-seconds,
we convert it into seconds, before analysis.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-51

1 import numpy as np
2 import matplot l ib . pyplot as p l t
3

4 data = np . genfromtxt (”pendulum_data . txt ”)
5

6 time1 = data [: , 0] / 1 0 0 0 . 0
7 voltage = data [: , 1]
8

9 p l t . p lot (time1 , vo l tage)
10 p l t . x l abe l (’Time (s) ’)
11 p l t . y l abe l (’ Voltage (Arb . unit) ’)
12 p l t . t i t l e (’ Measurement o f time per iod o f a pendulum ’)
13 p l t . gr id ()
14 p l t . show ()

Measurement of Time Period of a Pendulum

The data is then plotted (Fig.1.42), and since it is a time stamped data, we can obtain the time
interval between three blips or change in level, which would give us the Time period for the
given pendulum.

Figure 1.42: Square wave from the 555 timer board.

Now, in the test experiment, we used a pendulum, whose length was l = 66 cm, hence the expected

UGC DAE CSR
KC

1-52 Lecture 1: Getting Started with Arduino

time period is

T =
1

2π

√
l

g

=
1

2π

√
0.66

9.8

≈ 1.6 s

The time difference between 3 blips in the recorded signal also yields a value of T ∼ 1.6 s.

1.15 Arduino and LDR

1.15.1 Voltage Divider

A voltage divider is a relatively simple circuit which is used to scale down a large voltage into a
smaller one. This is of particular relevance to Arduino, which accepts, only a maximum of 5 V of
analog voltage, whereas in the real world, we have to deal with much larger voltages at times.
The configuration comprises of two series resistors R1 & R2 across which we apply the input
voltage, Vi. The output voltage, Vo is scaled according to the value of the two resistors, such that

Vo = Vi ·
R2

R1 +R2

if R1 = R2 = R then

Vo = Vi ·
R

R+R

=
Vi

2
if R2 >> R1 then

Vo ∼ Vi ·
R2

R2

∼ Vi output voltage is very close to the input voltage
if R2 << R1 then

Vo ∼ Vi ·
0

R1

∼ 0 most of the input voltage would be across R1

Hence, if R1 & Vi are known, we could deduce the value of the R2, which comes in handy, if we were
to use a thermistor, to measure the temperature, as the resistance of the thermistor is dependent
on the temperature. Similarly, a Light Dependent Resistor could be used to qualitatively determine
the light in our surroundings.

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-53

1.15.2 Light Dependent Resistor

A photo-resistor or Light Dependent Resistor is a component that is sensitive to light. When light
falls upon it then the resistance changes. Values of the resistance of the LDR may change over
many orders of magnitude the value of the resistance falling as the level of light increases.

LDRs are made from semiconductor materials to enable them to have their light sensitive properties.
However, they are passive components, in the sense that they do not comprise of the conventional
PN junction.

When, the light intensity, decreases , the resistance of the LDR increases . The LDR being a
semiconductor, in absence of light, it has a high resistance, viz. absence of sufficient mobile or free
electrons. The vast majority of the electrons are bound / locked into the crystal lattice and are
unavailable for a free movement within the crystal.

As light is incident on the semiconductor, the light photons are absorbed by the semiconductor
lattice and some of their energy is transferred to the electrons. This gives some of them sufficient
energy to break free from the crystal lattice, making them available for conduction (movement
within the entire crystal). This results in a lowering of the resistance of the LDR.

This also explains the direct proportionality between the intensity of the light and the lowering of
the resistance.

1.15.3 Arduino & LDR

The LDR is used as one of the resistors viz. R2, in a voltage divider circuit, and the voltage
between the two resistors, is measured using a Arduino as shown in the Fig.1.43.

We expect that in darkness the resistance of the LDR should be quite high, whereas as the intensity
of light increases, we expect the resistance of the LDR to reduce substantially.

UGC DAE CSR
KC

1-54 Lecture 1: Getting Started with Arduino

Figure 1.43: LDR connected in a voltage divider (replacing R2) and coupled to an Arduino.

1 // the setup rout ine runs once when you pres s r e s e t :
2 void setup () {
3 // i n i t i a l i z e s e r i a l communication at 9600 b i t s per second :
4 S e r i a l . begin (9600) ;
5 }
6

7 // the loop rout ine runs over and over again f o r eve r :
8 void loop () {
9 // read the input on analog pin 0 :

10 i n t sensorValue = analogRead (A0) ;
11 // Convert the analog reading (which goes from 0 - 1023) to a vo l tage (0 - 5V) :
12 f l o a t vo l tage = sensorValue ∗ (5 . 0 / 1023.0) ;
13 // Compute the r a t i o o f the two vo l tages
14 // f l o a t v ra t i o = voltage / 5 . 0 ;
15 // Compute the value o f the r e s i s t a n c e o f the LDR
16 f l o a t Rx = -1000.0/(vrat io - 1) ;
17 // pr int out the value you read :
18 S e r i a l . p r int (vo l tage) ;
19 S e r i a l . p r int (”\ t ”) ;
20 S e r i a l . p r i n t l n (Rx) ;
21 delay (5000) ;
22 }

Study of LDR

In the setup we used, in darkness the value of the resistence of the LDR was ∼ 340 KΩ, and when
we used the light from our mobile just above the LDR, the resistance dropped to ∼ 1 KΩ

UGC DAE CSR
KC

Lecture 1: Getting Started with Arduino 1-55

1.16 Precautions

Before commencing any experiment, run the Blink code to ensure the board and the communica-
tions with the host computer are well established.

The connectors are a major source of faults. Before commencing any experiment please ensure the
continuity of the wires. This can be done either using a multimeter, or connecting the on-board
5V supply to A0 and measuring the voltage. An improper connector would give us wrong voltages,
or open connections..

